Monday, September 19, 2016

Our Sense of Hearing

We are studying our senses. Last week we studied how our sense of hearing works.

Hearingauditory perception, or audition is the ability to perceive sound by detecting vibrations, changes in the pressure of the surrounding medium through time, through an organ such as the ear.

In humans and other vertebrates, hearing is performed primarily by the auditory systemmechanical waves, known as vibrations are detected by the ear and transduced into nerve impulses that are perceived by the brain (primarily in the (temporal lobe).
There are three main components of the human ear: the outer ear, the middle ear, and the inner ear.

Outer ear

The outer ear includes the pinna, the visible part of the ear, as well as the ear canal which terminates at the eardrum, also called the tympanic membrane. The pinna serves to focus sound waves through the ear canal toward the eardrum. Because of the asymmetrical character of the outer ear of most mammals, sound is filtered differently on its way into the ear depending on what vertical location it is coming from. This gives these animals the ability to localize sound vertically. The eardrum is an airtight membrane, and when sound waves arrive there, they cause it to vibrate following the wave form of the sound.

Middle ear

The middle ear consists of a small air-filled chamber that is located medial to the eardrum. Within this chamber are the three smallest bones in the body, known collectively as the ossicles which include the malleus, incus and stapes (sometimes referred to coloquially as the hammer, anvil and stirrup respectively). They aid in the transmission of the vibrations from the eardrum to the inner ear. While the middle ear may seem unnecessarily complex, the purpose of its unique construction is to overcome the impedance mismatch between air and water, by providing impedance matching.
Also located in the middle ear are the stapedius and tensor tympani muscles which protect the hearing mechanism through a stiffening reflex. The stapes transmits sound waves to the inner ear through the oval window, a flexible membrane separating the air-filled middle ear from the fluid-filled inner ear. The round window, another flexible membrane, allows for the smooth displacement of the inner ear fluid caused by the entering sound waves.

Inner ear

The inner ear consists of the cochlea, which is a spiral-shaped, fluid-filled tube. It is divided lengthwise by the organ of Corti, which is the main organ of mechanical to neural transduction. Inside the organ of Corti is the basilar membrane, a structure that vibrates when waves from the middle ear propagate through the cochlear fluid – endolymph. The basilar membrane istonotopic, so that each frequency has a characteristic place of resonance along it. Characteristic frequencies are high at the basal entrance to the cochlea, and low at the apex. Basilar membrane motion causes depolarization of the hair cells, specialized auditory receptors located within the organ of Corti. While the hair cells do not produce action potentials themselves, they release neurotransmitter at synapses with the fibers of the auditory nerve, which does produce action potentials. In this way, the patterns of oscillations on the basilar membrane are converted to spatiotemporal patterns of firings which transmit information about the sound to the brainstem.

How Our Ears Work

Resultado de imagen para sense of hearing